Analysis of three-dimensional heat transfer in micro-channel heat sinks
نویسندگان
چکیده
In this study, the three-dimensional fluid flow and heat transfer in a rectangular micro-channel heat sink are analyzed numerically using water as the cooling fluid. The heat sink consists of a 1-cm silicon wafer. The micro-channels have a width of 57 lm and a depth of 180 lm, and are separated by a 43 lm wall. A numerical code based on the finite difference method and the SIMPLE algorithm is developed to solve the governing equations. The code is carefully validated by comparing the predictions with analytical solutions and available experimental data. For the microchannel heat sink investigated, it is found that the temperature rise along the flow direction in the solid and fluid regions can be approximated as linear. The highest temperature is encountered at the heated base surface of the heat sink immediately above the channel outlet. The heat flux and Nusselt number have much higher values near the channel inlet and vary around the channel periphery, approaching zero in the corners. Flow Reynolds number affects the length of the flow developing region. For a relatively high Reynolds number of 1400, fully developed flow may not be achieved inside the heat sink. Increasing the thermal conductivity of the solid substrate reduces the temperature at the heated base surface of the heat sink, especially near the channel outlet. Although the classical fin analysis method provides a simplified means to modeling heat transfer in micro-channel heat sinks, some key assumptions introduced in the fin method deviate significantly from the real situation, which may compromise the accuracy of this method. 2002 Elsevier Science Ltd. All rights reserved.
منابع مشابه
Cooling Performance Analysis of Water-Cooled Heat Sinks with Circular and Rectangular Minichannels Using Finite Volume Method
In this paper, the cooling performance of water-cooled heat sinks for heat dissipation from electronic components is investigated numerically. Computational Fluid Dynamics (CFD) simulations are carried out to study the rectangular and circular cross-sectional shaped heat sinks. The sectional geometry of channels affects the flow and heat transfer characteristics of minichannel heat sinks. T...
متن کاملDetermination of Thermal Resistance in Three-Dimensional Analysis of Micro-Channel Heat Sink with Non - Newtonian Fluids
Micro-Channel Heat Sink is a heat exchanger which is used to control the temperature of electronic devices with high heat flux. A comprehensive thermal model for the micro-channels should include three dimensional conduction analysis in the solid body together with three dimensional developing fluid flow as well as heat transfer analyses in the fluid section. This paper reports on a research ...
متن کاملDetermination of Thermal Resistance in Three-Dimensional Analysis of Micro-Channel Heat Sink with Non - Newtonian Fluids
Micro-Channel Heat Sink is a heat exchanger which is used to control the temperature of electronic devices with high heat flux. A comprehensive thermal model for the micro-channels should include three dimensional conduction analysis in the solid body together with three dimensional developing fluid flow as well as heat transfer analyses in the fluid section. This paper reports on a research ...
متن کاملThree dimensional numerical study on a trapezoidal microchannel heat sink with different inlet/outlet arrangements utilizing variable properties nanofluid
Nowadays, microchannels as closed circuits channels for fluid flow and heat removal are an integral part of the silicon-based electronic microsystems. Most of previous numerical studies on microchannel heat sinks (MCHS) have been performed for a two-dimensional domain using constant properties of the working fluid. In this study, laminar fluid flow and heat transfer of variable properties Al2O3...
متن کاملExperimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink
The pressure drop and heat transfer characteristics of a single-phase micro-channel heat sink were investigated both experimentally and numerically. The heat sink was fabricated from oxygen-free copper and fitted with a polycarbonate plastic cover plate. The heat sink consisted of an array of rectangular micro-channels 231 lm wide and 713 lm deep. Deionized water was employed as the cooling liq...
متن کامل